SVM 2

[머신러닝 - 이론] Support Vector Machine (SVM, 서포트 벡터 머신)

앞의 글을 읽으시면 이해에 도움이 됩니다. 2022.10.18 - [Computer Science/머신러닝] - [머신러닝 - 이론] Linear Regression (선형 회귀) [머신러닝 - 이론] Linear Regression (선형 회귀) 앞의 글을 읽으시면 이해에 도움이 됩니다. 2022.04.07 - [Computer Science/머신러닝] - [머신러닝 - 이론] 인공지능이란? (What is artificial intelligence?) [머신러닝 - 이론] 인공지능이란? (What is.. hi-guten-tag.tistory.com 2022.10.18 - [Computer Science/머신러닝] - [머신러닝 - 이론] Polynomial Regression (다항 회귀) [머신러..

[머신러닝 - 이론] 머신러닝의 기초 (Fundamental of Machine Learning)

1. 머신러닝 기초 머신러닝에서 데이터는 중요합니다. 차가 가기 위해 연료가 필요하듯 머신러닝에는 데이터가 필수적입니다. 데이터가 없으면 머신러닝을 적용할 수가 없습니다. 아무것도 가르쳐 주지 않고, 예측하라는 것과 마찬가지입니다. 2. 용어 및 예시 데이터 셋 (Data Set) : 머신러닝이 사용하는 데이터는 여러 개의 샘플을 담고 있어서 데이터 셋이라 부릅니다. 특징 벡터 (feature vector) : 데이터의 특징으로 구성되는 특징들의 집합입니다. 부류 (class) : 쉽게 설명해서 꽃의 종류입니다. 특징으로는 색깔, 길이 등등이 있고, 이 특징들을 바탕으로 부류가 정해집니다. 머신러닝이 예측하는 값입니다. 사이킷런에서 제공하는 iris 데이터 셋을 한 번 확인해봅시다. from sklear..