해당 코드는 제 작업 공간 기준이므로 import 등이 안 맞을 수 있습니다.
이 점 유의해서 봐주시면 될 것 같습니다.
import sys, os
import numpy as np
import pickle
from PIL import Image
sys.path.append(os.pardir)
from mnist import load_mnist
from Activation_Function.func import sigmoid, softmax
def img_show(img):
pil_img = Image.fromarray(np.uint8(img))
pil_img.show()
def show_img():
# 첫 번째 이미지를 출력하는 함수
(input_train, target_train), (input_test, target_test) = \
load_mnist(flatten = True, normalize = False)
img = input_train[0]
label = target_train[0]
print(label)
print(img.shape)
img = img.reshape(28, 28)
print(img.shape)
img_show(img)
def get_data():
(input_train, target_train), (input_test, target_test) = load_mnist(normalize = True, flatten = True, one_hot_label = False)
return input_test, target_test
def init_network():
with open("sample_weight.pkl", "rb") as f:
network = pickle.load(f)
return network
def predict(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1'], network['b2'], network['b3']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
z2 = sigmoid(a2)
a3 = np.dot(z2, W3) + b3
y = softmax(a3)
return y
if __name__ == "__main__":
input, target = get_data()
network = init_network()
batch_size = 100
accuracy_cnt = 0
for i in range(0, len(input), batch_size):
# 배치 처리함
input_batch = input[i : i + batch_size]
pred_batch = predict(network, input_batch)
p = np.argmax(pred_batch, axis = 1)
# print(p == target[i : i + batch_size])
accuracy_cnt += np.sum(p == target[i : i + batch_size])
print(f'Accuracy : {accuracy_cnt / len(input)}')