앞선 글에서는 딥러닝이 무엇인지, 손실 함수는 어떻게 정의되고, 가중치 갱신 규칙에 대해 간략하게 알아봤습니다. 딥러닝의 학습 알고리즘은 수학적으로 아주 깔끔합니다. 하지만 층이 깊어질수록 딥러닝의 학습 중 발생하는 현실적인 문제를 말하고, 해결 전략에 대해 설명해드리겠습니다. 그리고 뒤에서는 몇몇 중요한 손실 함수와 옵티마이저 함수의 종류에 대해서 설명하겠습니다. 마지막으로 하이퍼 파라미터의 최적화 방법에 대해 알려드리겠습니다. 대표적인 두가지 문제는 그레이디언트 소멸 문제(Vanishing Gradient Problem), 과잉 적합 문제(Over Fitting Problem)입니다. 1. 그레이디언트 소멸 문제 (Vanishing Gradient Problem) 가중치를 갱신하는 과정은 미분의 연쇄..