from audioop import cross
import sys, os
sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__))))
from common import *
import numpy as np
class TwoLayerNet:
def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01) -> None:
self.params = {}
self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
self.params['b1'] = np.zeros(hidden_size)
self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size)
self.params['b2'] = np.zeros(output_size)
def predict(self, x : np.array) -> np.array:
W1, W2 = self.params['W1'], self.params['W2']
b1, b2 = self.params['b1'], self.params['b2']
a1 = np.dot(x, W1) + b1
z1 = sigmoid(a1)
a2 = np.dot(z1, W2) + b2
y = softmax(a2)
return y
def loss(self, x : np.array, t : np.array) -> np.array:
y = self.predict(x)
return cross_entropy(y, t)
def accuracy(self, x : np.array, t : np.array) -> float:
y = self.predict(x)
y = np.argmax(y, axis=1)
t = np.argmax(t, axis=1)
accuracy = np.sum(y == t) / float(x.shape[0])
return accuracy
def numerical_gradient(self, x : np.array, t : np.array) -> dict:
loss_W = lambda W : self.loss(x, t)
grads = {}
grads['W1'] = numerical_gradient_2d(loss_W, self.params['W1'])
grads['b1'] = numerical_gradient_2d(loss_W, self.params['b1'])
grads['W2'] = numerical_gradient_2d(loss_W, self.params['W2'])
grads['b2'] = numerical_gradient_2d(loss_W, self.params['b2'])
return grads
if __name__ == "__main__":
net = TwoLayerNet(input_size=784, hidden_size=100, output_size=10)
x = np.random.randn(100, 784)
y = net.predict(x)
print(y)